Guidance and Control for Spacecraft Planar Re-Phasing via Input-Shaping and Differential Drag
نویسندگان
چکیده
This paper proposes a solution to the problem of re-phasing circular or low eccentricity orbiting, short-distance spacecraft, by integrating existing analytical guidance solutions based on input-shaping and analytical control techniques for differential drag based on Lyapunov theory. The combined guidance and control approach is validated via numerical simulations in a full nonlinear environment using Systems Tool Kit. The results show promise for future onboard implementation on propellant-less spacecraft.
منابع مشابه
Near-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver
The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time opti...
متن کاملSpacecraft Maneuvering via Atmospheric Differential Drag Using an Adaptive Lyapunov Controller
An atmospheric differential drag based adaptive Lyapunov controller, originally proposed by the authors in previous work for spacecraft rendezvous, is here generalized allowing for the tracking of reference trajectories or dynamics. Differential drag is based on the ability to vary a satellite’s cross wind surface area, and it represents a propellant-free alternative to thrusters to control rel...
متن کاملNear-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver
The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. 
This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time op...
متن کاملQuaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques
In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...
متن کاملControlling the Power Output and Combustion Phasing in an HCCI Engine
In development of Homogeneous Charge Compression Ignition (HCCI) engines, simultaneous control of combustion phasing and power output has been a major challenge. In this study, a new strategy is developed to control the engine power output and combustion phasing at any desired operating condition. A single zone thermodynamic model coupled to a full kinetic mechanism of Primary Reference Fuels (...
متن کامل