Guidance and Control for Spacecraft Planar Re-Phasing via Input-Shaping and Differential Drag

نویسندگان

  • R. Bevilacqua
  • D. Perez
چکیده

This paper proposes a solution to the problem of re-phasing circular or low eccentricity orbiting, short-distance spacecraft, by integrating existing analytical guidance solutions based on input-shaping and analytical control techniques for differential drag based on Lyapunov theory. The combined guidance and control approach is validated via numerical simulations in a full nonlinear environment using Systems Tool Kit. The results show promise for future onboard implementation on propellant-less spacecraft.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver

The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time opti...

متن کامل

Spacecraft Maneuvering via Atmospheric Differential Drag Using an Adaptive Lyapunov Controller

An atmospheric differential drag based adaptive Lyapunov controller, originally proposed by the authors in previous work for spacecraft rendezvous, is here generalized allowing for the tracking of reference trajectories or dynamics. Differential drag is based on the ability to vary a satellite’s cross wind surface area, and it represents a propellant-free alternative to thrusters to control rel...

متن کامل

Near-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver

The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. &#10This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time op...

متن کامل

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Controlling the Power Output and Combustion Phasing in an HCCI Engine

In development of Homogeneous Charge Compression Ignition (HCCI) engines, simultaneous control of combustion phasing and power output has been a major challenge. In this study, a new strategy is developed to control the engine power output and combustion phasing at any desired operating condition. A single zone thermodynamic model coupled to a full kinetic mechanism of Primary Reference Fuels (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014